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Abstract

Objective: To enhance the performance of large language models (LLMs) in biomedical natural language processing
(BioNLP) by introducing a domain-specific instruction dataset and examining its impact when combined with multi-
task learning principles.

Materials and Methods: We created the BioInstruct, comprising 25,005 instructions to instruction-tune LLMs(LLaMA
1 & 2, 7B & 13B version). The instructions were created by prompting the GPT-4 language model with three-seed
samples randomly drawn from an 80 human curated instructions. We employed Low-Rank Adaptation(LoRA) for
parameter-efficient fine-tuning. We then evaluated these instruction-tuned LLMs on several BioNLP tasks, which
can be grouped into three major categories: question answering(QA), information extraction(IE), and text genera-
tion(GEN). We also examined whether categories(e.g., QA, IE, and generation) of instructions impact model perfor-
mance.

Results and Discussion: Comparing with LLMs without instruction-tuned, our instruction-tuned LLMs demonstrated
marked performance gains: 17.3% in QA on average accuracy metric, 5.7% in IE on average F1 metric, and 96% in
Generation tasks on average GPT4 score metric. Our 7B-parameter instruction-tuned LLaMA 1 model was competitive
or even surpassed other LLMs in the biomedical domain that were also fine-tuned from LLaMA 1 with vast domain-
specific data or a variety of tasks. Our results also show that the performance gain is significantly higher when
instruction fine-tuning is conducted with closely related tasks. Our findings align with the observations of multi-task
learning, suggesting the synergies between two tasks.

Conclusion: The BioInstruct dataset serves as a valuable resource and instruction tuned LLMs lead to the best per-
forming BioNLP applications.

Keywords: Instruction Tuning, Large Language Models, Question Answering, Natural Language Inference, Informa-
tion Extraction, Text Generation, Multi-task Learning
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Introduction

LLMs, including GPTs, have made significant impact on natural language processing (NLP) applications [1, 2, 3, 4,
5, 6]. In the clinical domain, efforts have been made to fine-tune LLMs [7, 8, 9, 10]. Yet, this method can be resource-
intensive and is at risk of overfitting, more so when faced with limited or low-quality clinical data [7]. In contrast,
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”instruction tuning” emerges within the NLP community as a promising alternative to such exhaustive fine-tuning of
LLMs [11]. Stemming from Instruction Fine-tuning [12], it enables models to adapt to and perform new tasks more
effectively through natural language instructions alone. Innovations by Mishra et al. [13] and Wang et al. [14] have
laid the groundwork for instruction tuning by harmonizing crowdsourced instructions. This approach, expanded upon
by Sanh et al. [2] and Wei et al. [11], strives for adaptability to novel instructional tasks. Subsequent efforts, like those
by Chung et al. [12], amplify the technique, spotlighting task diversity, augmented model scale, and integrated chain-
of-thought, with Ouyang et al. [15] introducing a unique reinforcement learning perspective. Nevertheless, despite its
notable progress in general NLP scenarios, the biomedical field finds itself underrepresented, primarily attributed to
the missing tailored instruction sets [16, 7]. Addressing this lacuna, our study introduces a comprehensive BioNLP
instruction dataset, curated with limited human intervention.

Specifically, we introduce BioInstruct, a dataset comprising more than 25,000 natural language instructions along
with their corresponding inputs and outputs. Drawing inspiration from recent work that leverages the GPT language
model for data generation [17], we collect BioInstruct in a fully automated manner. We prompt a pre-trained LLM,
GPT-4, with a sample of three examples (as seeds) from our manually collected triplets (instructions, input, output),
then instruct the model to generate new instructions as illustrated in Appendix Table 5. Through this process, we
automatically produce over 25,000 diverse triplets consisting of instructions, inputs, and outputs spanning a range of
biomedical NLP tasks. We subsequently use BioInstruct to fine-tune both LLaMA 1 [18] and LLaMA 2 [19].

To evaluate LLM’s ability for the biomedical applications, we introduced a benchmark including the several BioNLP
tasks which can be grouped into three major categories: question answering, information extraction, and text genera-
tion.

• QA (Question Answering) category include Question Answering and Natural Language Inference (NLI) tasks
play a pivotal role in healthcare by allowing accurate retrieval of specific knowledge from vast medical reposi-
tories, aiding doctors in diagnostics and treatment planning [20].

• IE (Information Extraction) category aims to identify and extract relevant data from unstructured clinical text
automatically, enabling healthcare professionals to make well-informed decisions, thus improving patient care
[21].

• Text Generation category has the potential to revolutionize patient care by summarizing conversation into
clinical notes [22, 23, 24, 25, 26] or generating patient’s assessment given patients symptom [27, 28].

Our findings offer insights into the diverse impacts of BioInstruct across these tasks. We find that LLMs fine-tuned with
BioInstruct outperformed LLMs without BioInstruct in QA, IE, Generation tasks by 17.3%, 5.7%, 96% respectively.
Driven by the relatively low improvements in IE, we conducted data ablation experiments to explore the type of tasks
in BioInstruct that contribute to these improvements. We observe that contributing fine-tuning tasks is unique to each
evaluation task. When evaluating text generation, LLMs fine-tuned on all tasks from BioInstruct outperforms LLMs
fine-tuned on any single task. But this is not the case when evaluating on QA and IE.

In addition, experiments show that fine-tuning a 7B-parameter LLaMA 1 model [18] on BioInstruct can perform
competitively or even outperform baseline models such as PMC-LLaMA 7B [29], Asclepius 7B [30], MedAlpaca 7B
[31] and ChatDoctor [32] across several benchmarks. Notably, all these models, including ours, are derived from the
foundational LLaMA 1 model [18], ensuring a fair basis for comparison. Specifically, we note that our instructed
LLaMA 1 model outperforms in 4 out of 4 question-answering tasks when compared with Asclepius [30], PMC-
LLaMA [29] and it also exceeds MedAlpaca [31] in natural language inference task. This suggests that BioInstruct
is particularly effective for augmenting the model to apply medical knowledge. We also notice a positive correlation
between the number of generated examples and downstream task performance, implying that the performance of
models trained on BioInstruct can be further enhanced simply by expanding its size. To summarize, our research
contributions are as follows:

• We introduce a new benchmark to evaluate LLMs ability on three categories of BioNLP tasks: QA to evaluate
medical knowledge, IE to evaluate clinical extraction, and text generation to evaluate applied clinical skills.



• We introduce a new Instruction Tuning data BioInstruct, which specifically tailored for the biomedical domain.
We find that LLMs fine-tuned on BioInstruct significantly improve performance on the benchmark compared to
competitive baselines.

• We further explore the type of tasks in BioInstruct that contribute to these improvements through the Multi-Task
Learning framework. We observe that contributing to fine-tuning tasks is dependent on each evaluation task. This
inspires future work to predict contributing tasks given a new evaluation task.

Related Work

LLMs in BioNLP The use of LLMs in the field of natural language processing (NLP) has shown remarkable potential
and achieved significant milestones. The fine-tuning of these models on specific tasks has resulted in breakthroughs
across a wide range of applications, including translation, text generation, and question-answering. In BioNLP, LLMs
have also begun to play a crucial role. These models, when fine-tuned on biomedical text corpora, have shown
promising results in medical information extraction, biomedical literature summarization, and answering medical
questions. Models like BioBERT [33], ClinicalBERT [7], and the recent MedAlpaca [31] which introduces an open-
source collection of medical conversational AI models and training data tailored for LLMs, have advanced biomedical
text mining capabilities. Additionally, fine-tuned LLMs such as PMC-LLaMA [29], Asclepius [30] and ChatDoctor
[32] have shown impressive performance in various biomedical tasks, setting new benchmarks in the field.

Traditional Fine-Tuning vs Instruction Tuning Traditional fine-tuning and instruction tuning offer contrasting
methods for adapting large language models (LLMs) to specific tasks. Traditional fine-tuning, as used in models like
BioBERT [33] and ClinicalBERT [7], involves extensive retraining of a pre-trained model on task-specific datasets.
This approach often yields highly specialized models but requires substantial, high-quality data and can be prone to
overfitting. On the other hand, instruction tuning, exemplified by works like [11], focuses on the model’s ability to fol-
low natural language instructions, promoting flexibility and generalizability across various tasks with less dependency
on extensive task-specific data. This approach is particularly beneficial in scenarios where acquiring large annotated
datasets is challenging. However, instruction tuning may not always achieve the same level of task-specific accuracy
as traditional fine-tuning with a dedicated dataset. The choice between these methodologies depends on factors like
data availability, adaptability needs, and desired task performance.

Instruction Tuning in BioNLP Obtaining large-scale supervised data can be expensive and time-consuming. A
popular solution in recent literature has been to use language models (LMs) for automatic data generation and aug-
mentation [34, 35]. Different from that, Self-Instruct [17] is not specific to a particular task (say, QA or NLI) but to
bootstrap new task definitions that may not have been defined before by NLP practitioners (though potentially still
important for real users) [36, 14, 1]. Recent work by [11] highlighted that instruction tuning – fine-tuning language
models on a collection of datasets described via instructions substantially improves zero-shot performance of LLMs
on unseen tasks. In parallel with our work, Zhang et al. [37] also propose generating instruction data with GPT-4
models and fine-tuning with the LLaMA model (so called AlpaCare). The major differences are that 1) they use a set
of clinician-crafted tasks as their seed tasks, resulting in a different distribution of generated tasks; 2) they evaluate the
performance of their instructed model on different benchmarks and employ different metrics.

Methodology

Our methodology incorporates two primary components: the creation of our BioInstruct dataset and the subsequent
fine-tuning of several LLMs.

Instruction Collection

We introduce BioInstruct, a dataset comprising 25,005 natural language instructions tailored to a broad array of
biomedical and clinical natural language processing tasks. Each entry in this dataset is structured with a natural
language instruction, an associated input, and the expected output resulting from the instruction’s execution.



QA
22.8%

Others
10.0%

Generation
33.5%

Information Extraction
33.8%

(a) Task type distribution of 25,005 natural lan-
guage instructions

provideidentify

summarize

explain

suggest

re
co

m
m
en

d

classify

describe
sim

plify

interpret

list

recommendation

explanation

information

summary
interaction

cause

type

factor

finding

point

article

abstr
act

diff
eren

ce

pur
pos

e

im
por

tan
ce

rol
e

dia
gn
os
is

co
nd
iti
on

te
st

ch
an
ge

test

m
ed

ic
at
io
n

m
od

ifi
ca
tio

n
pl
an

condition

sym
ptom

process
step
role

term
jargon

result

list

term

risk

(b) The top 20 most common root verbs (inner circle) and their top 4 direct
noun objects (outer circle) in the generated instructions.

Figure 1: Distribution of our BioInstruct dataset

Taking inspiration from the “Self-Instruct” methodology [17], the collection of BioInstruct is a fully automated pro-
cess. This process requires only an initial set of 80 manually constructed seed tasks, which can be produced within
roughly three hours of human effort. These seed examples span a diverse range of biomedical and clinical NLP tasks,
covering areas such as answering biomedical questions, summarizing, assessing eligibility for clinical trials, and de-
termining differential diagnosis, among others (some examples of seed tasks are shown in Appendix Table 6). During
the data collection phase, we prompted the pretrained GPT-4 language model with three examples randomly selected
from seed tasks, guiding it to generate new samples (illustrated in Appendix Table 5). We prompted GPT-4 to create
25,005 natural language instructions in July 2023.

Among the GPT-4 created instructions, we plot the top 20 most common root verbs and their top 4 direct noun objects
of BioInstruct dataset in Figure 1. Overall, we see quite diverse intents and textual formats in these instructions. Ad-
ditionally, we used GPT-4 to classify the instructions into major categories such as Question Answering, Generation,
Information Extraction, and Others(e.g. trial recommendation). We validate the GPT-4 classification performance
through 1000 test examples. The accuracy is 87.3%. Moreover, to provide a deeper insight into the reliability of these
category predictions, we conducted an inter-rater reliability analysis with three independent raters who classified each
example into the designated major categories. This process resulted in a Krippendorff’s alpha of 0.83, reflecting a
strong consensus among the raters and underscoring the consistency and precision of our categorization approach.
The high degree of agreement, as indicated by this alpha value, further validates the integrity and reliability of our
methodology. The distribution of these categories is visually represented in the pie chart shown in Figure 1. The data
generation prompt consists of examples in a structured format, making it easier for the pre-trained GPT-4 language
model to generate. Each example in the dataset contains three fields:

1. An instruction describing the task (e.g. “Given a lengthy patient education material, provide a concise summary
that preserves the crucial information, while ensuring it remains accessible for patients”).

2. The input argument that instantiates the instruction, creating a specific example of the task.

3. A textual output reflecting a correct execution of the instruction given the input arguments.

For promoting diversity, we only incorporate a new instruction into the task pool if its ROUGE-L similarity with
present instructions falls below 0.7. Instructions with particular keywords (like image, picture, graph), which are
typically not handled by LMs, are disregarded. Invalid generations are identified and filtered out based on heuristics
including instruction is too long (more than 150 words) or too short (less than 3 words), instance output is a repetition



of the input

Instruction Tuning

Instruction Tuning refers to continually training an LLM with NLP tasks formatted as natural language instructions
and model responses treated as task outputs [11]. Further to solving structured natural language tasks [38] turned an
English-centric LLM, LLaMA 1 [18], into an open-ended chat model. It delivers GPT-like performance for English
by training on distilled data from GPT itself [17]. Our work follow the similar approach performing instruction tuning
on LLaMA 1 [18] and LLaMA 2 [19] using our BioInstruct dataset.

The core idea behind Instruction Tuning is to utilize natural language as a versatile interface, allowing models to pro-
cess instructions in the same way they would handle any other text input. This significantly broadens their usability
across various domains and tasks, leveraging their pre-trained capabilities to interpret and act upon instructions di-
rectly. Instruction Tuning thus encourages models to become more flexible in their application, moving towards an
intuitive understanding of tasks through human-like instructions.

An example of how instruction tuning is performed can be seen in what we show in Appendix Table 7. This table
presents a typical instruction tuning prompt format, where an instruction clearly defines a task, followed by an input
providing contextual background, and the model generates an appropriate response based on the instruction. This
approach exemplifies the Instruction Tuning process, illustrating its implementation in training models to perform
specialized tasks by utilizing task descriptions and inputs to guide the generation of precise outputs.

Multi-task Exploration

To find out which task in BioInstruct contributed the most for the evaluation benchmark. We first grouped the samples
in BioInstruct into the following BioNLP application categories: QA, IE, generation, and other tasks, each consisting
of 22.8%, 33.8%, 33.5%, and 10%, respectively. We then fine-tuned on a subset (following single or multiple tasks)
of BioInstruct tasks as mentioned previously. We then evaluated models on the benchmark. We exclude NLI as there
are few samples in the BioInstruct dataset.

Experimental Setup

In this section, we detail our experimental setup, the datasets employed, and the evaluation strategy adopted for
assessing the performance of our instruction-tuned LLMs in various BioNLP tasks. A 2-sided t test was used to
determine the significance of improvements between different models. All significance tests were evaluated at α =
0.05. Furthermore, all experiments were conducted using two Nvidia A100 GPUs, each with 40 GB of memory. The
CPU used was an Intel Xeon Gold 6230 processor, and the system was equipped with 192 GB of RAM.

Benchmark Datasets

Our experiments spanned multiple subtasks, covering major NLP tasks within the biomedical domain. We focused on
recent tasks to prevent data leakage as GPT4 was trained for information up until September 2021:

Multiple Choice Question Answering (MCQA):

• MedQA-USMLE [39]: A subtask containing multiple-choice questions from the United States Medical Licensing
Examination.

• MedMCQA [40]: Features medical multiple-choice questions source from various textbooks and clinical scenar-
ios.

• PubMedQA [41]: A benchmark dataset for biomedical research question answering derived from PubMed ab-
stracts.

• BioASQ MCQA [42]: A comprehensive subtask designed for biomedical semantic indexing and question answer-



ing.

Natural Language Inference (NLI):

• MedNLI [43]: A medical NLI subta crafted from clinical narratives, which tasks models with determining the
relationship between premise and hypothesis sentences. We excluded NLI for multi-task exploration, as there
were few samples in the BioInstruct dataset.

Clinical Information Extraction:

• Medication Status Extraction [44]: A subtask focusing on the extraction of medication-related information from
clinical narratives, such as drug names, dosages, and administration routes.

• Clinical Coreference Resolution [44]: This involves identifying phrases in clinical texts that refer to the same
entity, facilitating understanding patient narratives.

Generation Task about clinical skills:

• Conv2note [22]: This is a subtask (A) of the MediQA-Chat 2023 Challenge. The goal is to generate a section of
a structured clinical note based on a given patient-doctor conversation, with an emphasis on accurately capturing
medical details.

• ICliniq [32]: In this subtask, given a patient’s detailed description of their concerns or symptoms, the aim is
to provide a compassionate, reassuring, and informative medical response that addresses their worries and offers
professional guidance on the next steps or actions to take. We evaluate this using a random subset of 100 samples
from the ICliniq dataset.

Evaluation Metrics

For the multiple choice QA and NLI tasks, we employed accuracy as the primary metric.

In the clinical information extraction tasks, performance was gauged using precision, recall, F1 score, and conditional
accuracy. The latter specifically measured the correctness of medication status classification, indicating how many
statuses were correctly identified.

For the generation task, we utilized the GPT4 API to evaluate Coherence, Naturalness, and Completeness scores,
which assess the quality and relevance of the generated contents. This decision was informed by recent studies [45,
46], which demonstrated GPT-4’s strong alignment with human evaluation in various generative tasks. Those works
have shown GPT-4’s evaluations on coherence, naturalness, and completeness to closely mirror human judgments,
suggesting its reliability in assessing the nuanced aspects of generated content. In the clinical NLP domain, a previous
study [47] compared GPT-4 evaluation and human evaluation on 100 patient-doctor conversations and show that GPT-
4 evaluation generally aligns with human evaluation in Figures 3 and 4 of [47]. To further refine our evaluation,
we incorporated the Bertscore F1 metric. This metric, derived from the embeddings of the BERT model, gauges
the semantic similarity between the generated and reference texts. Another significant metric we introduced was
the Concept F1, which calculates the overlap of medical entities between two documents, offering insight into the
model’s grasp of medical knowledge and terminology. Additionally, the Bleurt score, an advanced metric designed
specifically for generation tasks, was employed. It determines the alignment of the model’s output with the human-
written reference, both syntactically and semantically.

Baseline Models

In our study, we compared the performance of BioInstruct with several prominent baselines in the BioNLP domain:

Asclepius [30] is a specialized clinical LLM, further fine-tuned from LLaMA 1 on synthetic clinical notes derived
from publicly available biomedical literature. Preliminary evaluations show that Asclepius can effectively handle
tasks on real clinical notes, showing its promise for real-world healthcare applications.



Model MedQA-USMLE MedMCQA PubmedQA BioASQ MCQA MedNLI
AlpaCare LLaMA 1 7B 28.7 ± 0.0722 33.91 ± 0.0097 62.9 ± 0.2104 68.43 ± 2.7543 33.3 ± 0.3143
AlpaCare LLaMA 2 7B 34.88 ± 0.0466 36.04 ± 0.0643 55.52 ± 1.0427 67.14 ± 2.8654 35.96 ± 0.1209
Asclepius 7B 29.08 ± 0.2405 30.46 ± 0.0953 40.14 ± 0.3667 72.14 ± 1.439 38.83 ± 0.0302
ChatDoctor 30.92 ± 0.1097 31.01 ± 0.1182 63.08 ± 0.4116 74.86 ± 0.601 40.14 ± 1.5672
MedAlpaca 7B 37.61 ± 0.0467 34.37 ± 0.079 48.82 ± 0.3415 61.57 ± 5.9762 36.6 ± 2.1421
PMC-LLaMA 7B 27.73 ± 0.0743 26.94 ± 0.1485 55.8 ± 1.4445 61.43 ± 1.4289 33.71 ± 1.1738
LLaMA 1 7B 27.47 ± 0.0628 25.06 ± 0.1601 47.54 ± 0.5771 70.14 ± 2.7543 33.59 ± 0.9334
LLaMA 1 7B Instruct 31.5 ± 0.0038 31.46 ± 0.0561 64.36 ± 1.6479 81.14 ± 1.8933 43.27 ± 1.9985
LLaMA 1 13B 33.85 ± 0.8164 31.76 ± 0.0473 54.88 ± 0.4572 69.86 ± 1.4991 34.62 ± 2.0661
LLaMA 1 13B Instruct 36.76 ± 0.121 34.03 ± 0.4909 58.75 ± 1.3148 84.29 ± 2.0862 34.63 ± 0.5435
LLaMA 2 7B 30.37 ± 1.0608 29.41 ± 0.0377 57.2 ± 0.7538 65.86 ± 3.1138 33.35 ± 0.016
LLaMA 2 7B Instruct 37.25 ± 0.3621 36.14 ± 0.0254 63.97 ± 0.7363 84.76 ± 4.4353 34.96 ± 1.3937
LLaMA 2 13B 34.89 ± 0.5802 32.37 ± 0.3702 67.76 ± 0.7174 73.14 ± 2.97 35.94 ± 1.006
LLaMA 2 13B Instruct 39.32 ± 0.0998 36.54 ± 0.27 71.73 ± 1.0781 87.38 ± 4.8823 41.7 ± 0.1315

Table 1: Zero-shot performance of the original, instructed, and some baseline models on multiple-choice QA tasks
and natural language inferences tasks, p < 0.05; 95% confidence interval.

Models Medication Status Extraction Coreference Resolution
Precision Recall F1 Conditional ACC Precision Recall F1

PMC-LLaMA 7B 68.08 78 67.28 ± 0.3213 71.21 ± 0.3311 56.56 47.37 45.97 ± 0.1935
ChatDoctor 63.07 83.56 67.6 ± 0.0232 80.31 ± 0.3565 58.29 56.18 54.02 ± 0.0366
LLaMA 1 7B 67.61 71.95 66.58 ± 0.0601 78.45 ± 0.2048 60.14 39.19 43.8 ± 0.1914
LLaMA 1 7B Instruct 62.83 84.43 68.97 ± 0.241 82.52 ± 0.6844 67.58 52.52 55.14 ± 0.1765
LLaMA 2 7B 65.58 89.16 71.72 ± 0.2313 76.69 ± 0.1564 61.48 45.97 50.03 ± 0.3343
LLaMA 2 7B Instruct 75.44 82.83 75.63 ± 0.3701 82.3 ± 0.0664 72.58 58.69 61.24 ± 0.439

Table 2: One-shot performance of the baseline models, original LLaMA, and instructed LLaMA on the medication
status extraction and coreference resolution tasks. Conditional ACC measured the correctness of medication status
classification, indicating how many statuses were correctly identified conditional on the extracted medications, p <
0.05; 95% confidence interval.

ChatDoctor [32] is a language model aiming for health assistants, that is designed to provide users with medical
information, advice, and guidance. For training, it is fine-tuned from LLaMA 1 7B model with the dialogue-based
instruction tuning data.

MedAlpaca [31] is a model that has been further fine-tuned on Alpaca [38], which is an instruction-tuned variant of
LLaMA. Its primary focus is on assisting with medical dialogues and handling question-answering tasks.

PMC-LLaMA [29] is a domain-adapted LLaMA 1 model that was pretrained on 4.8M biomedical academic papers
and 30K medical textbooks, and was further fine-tuned with a comprehensive dataset tailored for instruction tuning,
covering areas like medical question-answering and conversational dialogues.

Results

Performance on QA and NLI tasks

How does instruction tuning perform on QA and NLI tasks? Table 1 details the zero-shot performance across var-
ious models on multiple-choice question answering (QA) tasks and natural language inference (NLI) tasks within the
biomedical domain, including MedQA-USMLE, MedMCQA, PubmedQA, BioASQ MCQA, and MedNLI. Focusing
on the LLaMA series, the instructed variants consistently outperform their non-instructed counterparts, demonstrat-
ing the utility of instruction tuning in enhancing model performance. For instance, in the MedQA-USMLE task,
instruction-tuned LLaMA 1 7B outperformed its non-instructed variant by a 95% confidence interval (CI) of 3.96 to



Models GPT4 Metrics Other Metrics
Coherence Completeness Naturalness Concept F1 BertScore F1 Bleurt

Conv2note
PMC-LLaMA 7B 2.84 ± 0.0031 2.91 ± 0.0010 2.46 ± 0.0016 17.91 ± 0.3291 85.91 ± 0.5463 46.63 ± 0.2789
ChatDoctor 4.47 ± 0.0004 4.46 ± 0.0016 4.37 ± 0.0004 29.42 ± 0.0491 86.99 ± 0.3024 51.34 ± 0.1637
LLaMA 1 7B 2.74 ± 0.0020 2.76 ± 0.0016 2.44 ± 0.0038 17.87 ± 0.5227 85.28 ± 0.3021 46.95 ± 1.8605
LLaMA 1 7B Instruct 4.49 ± 0.0011 4.54 ± 0.0012 4.42 ± 0.0014 31.13 ± 0.1979 88.45 ± 0.0218 53.19 ± 0.0231
LLaMA 2 7B 2.80 ± 0.0037 2.96 ± 0.0009 2.57 ± 0.0060 18.93 ± 0.9404 84.92 ± 0.0894 45.95 ± 0.2743
LLaMA 2 7B Instruct 4.45 ± 0.0025 4.41 ± 0.0011 4.28 ± 0.0043 27.87 ± 0.1094 88.06 ± 0.0254 51.67 ± 0.0252

Doctor-Patient QA
PMC-LLaMA 7B 2.31 ± 0.0060 2.64 ± 0.0132 2.34 ± 0.0039 15.85 ± 0.1743 84.02 ± 1.6380 46.55 ± 0.1897
ChatDoctor 4.81 ± 0.0002 4.86 ± 0.0007 4.62 ± 0.0002 18.37 ± 0.5444 86.25 ± 0.1389 48.25 ± 0.8187
LLaMA 1 7B 2.4 ± 0.0042 2.35 ± 0.0027 2.28 ± 0.0093 17.91 ± 0.1545 83.08 ± 0.0483 47.57 ± 0.8279
LLaMA 1 7B Instruct 4.7 ± 0.0010 4.74 ± 0.0011 4.58 ± 0.0017 20.3 ± 0.0185 87.38 ± 0.0245 50.28 ± 0.0225
LLaMA 2 7B 1.95 ± 0.0171 2.14 ± 0.0101 1.8 ± 0.0018 15.35 ± 0.5389 84.77 ± 0.2790 46.21 ± 0.3205
LLaMA 2 7B Instruct 4.86 ± 0.0005 4.9 ± 0.0011 4.71 ± 0.0009 22.63 ± 0.1026 86.35 ± 0.0327 48.34 ± 0.0453

Table 3: One-shot performance of the original model, instructed model, and some baseline models on MediQA-Task A:
doctor-patient conversation to clinical note and ICliniq: doctor-patient question answering, p < 0.05; 95% confidence
interval.

Eval Task
Train Task Performance Gain

QA IE GEN w. QA w. IE w. GEN
QA 53.46 52.80 52.27 - 0.07% -0.94%
IE 69.07 72.43 65.17 2.04% - -3.74%

GEN 4.36 4.39 4.42 2.15% -2.00% -

Table 4: Performance on different tasks when trained on a single task and performance gain when model is trained with
one additional task besides the evaluation task. For the QA task, average accuracy was calculated using results from
four datasets: MedQA-USMLE, MedMCQA, PubmedQA, and BioASQ MCQA. For the IE task, average F1 scores
from Medication Status Extraction and Coreference Resolution were used. Lastly, for the Generation task, average
scores based on GPT-4 metrics from the Conv2note and Doctor-Patient QA datasets were evaluated.

4.10, p < 0.05. Similar improvements were observed in the MedMCQA, where the instructed version surpassed the
non-instructed LLaMA 1 7B by a 95% CI of 6.2 to 6.6, p < 0.05. The BioASQ MCQA and PubmedQA tasks fur-
ther illustrate the strength of instruction tuning. LLaMA 1 13B Instruct exhibited superior performance, with notable
improvements in BioASQ MCQA, achieving a score of 84.29 compared to the non-instructed score of 69.86, with a
95% CI of 11.41 to 17.45, p < 0.05. Similarly, in PubmedQA, the instructed variant recorded an improvement with
a 95% CI of 2.23 to 5.51, p < 0.05 over the non-instructed model. Moreover, instruction-tuned LLaMA 2 models
also showed remarkable performance leaps. In the MedNLI task, LLaMA 2 13B Instruct achieved an improvement
with a 95% CI of 4.57 to 6.95, p < 0.05, compared to its non-instructed version. The consistency of improvement
across multiple models and tasks validates the effectiveness of instruction tuning in leveraging model capabilities for
specific domain tasks. These statistically significant improvements emphasize the critical role of instruction tuning in
enhancing the specialized performance of language models, particularly in demanding domains like medical question
answering and inference tasks.

Performance on IE tasks

How does instruction tuning perform on medication status extraction? Table 2 showcases the performance of
various models on the clinical information extraction task, specifically focused on medication status. Notably, LLaMA
2 7B Instruct recorded the highest F1 score of 75.63 significantly outperforming its non-instructed counterpart by a
95% CI: 3.40 to 4.42, p < 0.05. This was paralleled by a substantial boost in precision, achieving the top score of
75.44 compared to 65.58 from its non-instructed version. Similarly, LLaMA 1 7B Instruct showed a notable increase



in recall from 71.95 to 84.43, leading to an F1 improvement reflecting with a 95% CI of 2.10 to 2.68, p < 0.05. These
improvements underline the effectiveness of instruction tuning in enhancing the model’s ability to accurately extract
and classify medication status, substantiating the method’s value in clinical applications.

How does instruction tuning perform on clinical coreference resolution? Table 2 also illustrates the performance
of various models on the clinical information extraction task of coreference resolution. LLaMA 2 7B Instruct led with
an F1 score of 61.24, markedly better than its non-instructed version which posted an F1 of 50.03. This improvement
is with a 95% CI: 10.88 to 11.54, p < 0.05 highlights the substantial enhancement brought about by instruction tuning.
The LLaMA 1 7B Instruct also saw a significant F1 increase to 55.14 with a 95% CI: 10.56 to 11.86, p < 0.05. The
advancements in precision and recall across both models accentuate the advantage of instruction tuning in mastering
the intricacies of coreference resolution within the clinical domain, which is essential for constructing coherent and
comprehensive patient narratives.

Performance on Generation tasks

How does instruction tuning perform on Short Dialogue2Note Summarization? Table 3 encapsulates the perfor-
mances of various models on the Conv2note, a challenging task aimed at converting doctor-patient conversations to
clinical notes. The instruction-tuned LLaMA 1 7B model demonstrated significant improvements across all metrics
compared to its non-instructed version, with a marked increase in Coherence from 2.74 to 4.49, Completeness from
2.76 to 4.54, and Naturalness from 2.44 to 4.42, outperforming the baseline LLaMA 1 7B by a 95% confidence in-
tervals of 1.747-1.753, 1.777-1.782, and 1.975-1.985, respectively, all with p < 0.05. Similarly, the LLaMA 2 7B
Instruct model also exhibited notable improvements, achieving higher scores in all categories than the non-instructed
version, which highlights the effectiveness of instruction tuning in enhancing the model’s ability to generate coherent,
complete, and natural notes from conversations.

How does instruction tuning perform on Doctor-Patient QA? Table 3 also illustrates the performances of several
models on ICliniq, a challenging task aimed at mimicking the doctor-patient question answering. LLaMA 2 7B
Instruct not only surpassed its non-instructed counterpart significantly with improvements in Coherence (1.95 to 4.86),
Completeness (2.14 to 4.9), and Naturalness (1.8 to 4.71) but also outperformed the PMC-LLaMA 7B and ChatDoctor
models. These improvements are statistically significant with a 95% confidence intervals of 2.90-2.93, 2.748-2.772,
and 2.908-2.912, respectively, all with p < 0.05., showcasing instruction tuning’s pivotal role in optimizing models
for complex QA tasks. The LLaMA 2 7B Instruct also set a new benchmark by achieving the highest scores across
almost all metrics, further underscoring the impact of targeted instruction tuning in enhancing model performance on
specialized tasks.

Multi-task Instruction Tuning Result

In the previous section, we find that models instruction-fine-tuned with BioInstruct outperformed models without
BioInstruct. In this section, we attempt to find out how BioInstruct impact model performance. We summarize our
findings by answering the following 4 questions:

Which task-specific tuning results in the best model performance? Table 4 contains the result of our LLaMA2
model instruction fine-tuned with only one single task. For each evaluation subtask, model instruction fine-tuned on
the same task as evaluation task outperforms model instruction fine-tuned on other tasks. Except two non-IE subtasks:
BioASQ MCQA and Conv2note.

Which additional task-specific tuning results improve the most? We also explore synergies between tasks in multi-
task scenario. Table 4 also contains the result of our LLaMA 2 model instruction fine-tuned with two tasks combined.
During instruction tuning, we fix one training task the same as the evaluation task and permutate the additional task
among tasks other than the evaluation task. We find that models fine-tuned on some additional tasks outperformed
those fine-tuned without the additional task, but not all additional tasks improves performance in evaluation task. We
summarize our findings as follows:
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Figure 2: Performance of different tasks in BioInstruct. Each scatter corresponds to a subtask to evaluate. Each colored
dot inside the scatter represents a different training task. The black dot represents the baseline performance of LLaMA
2 7B without BioInstruct fine-tuning. The purple dot represents the performance of LLaMA 2 7B fine-tuned on all
BioInstruct tasks. We then ablate BioInstruct. Above each scatter, we provide the best single task fine-tuned (dark
blue, green, red) in the 1st row. In the 2nd row, we also provide the best fine-tuning task in addition to the specific task
A, where task A is the same as the evaluation task (light blue, green, red).

1. Additional IE task helps QA (0.07%) and vice versa (2.04%).

2. The additional QA task benefits the generative task by 2.15%. However, the generative task does not benefit QA.

Does fine-tuning more tasks achieves better performance? Finally, we explore if more training tasks leads to
better performance. We verify the following statement for different evaluation tasks: Model fine-tuned on all tasks
outperforms model fine-tuned on single task or two tasks as mentioned previously. We found that this statement is true
for all generative tasks. But it does not apply to any of the IE tasks as shown in Figure 2.

How much data used for instruction tunning will make a difference? We found that 5K samples from BioInstruct
significantly improve the performance on most evaluation task as shown in Figure 3. However, adding more fine-tuning
samples would still improve the performance. Further investigation into performance dynamics revealed a nuanced
response to increasing instruction volumes across different task categories. Specifically, while QA and IE tasks gen-
erally benefited from a larger set of instructions, a notable dip in IE task performance at the 10,000 samples suggested
a temporary challenge in generalization, which was subsequently overcome as instruction diversity increased at the
25,000 samples. Conversely, generation tasks demonstrated a steady improvement in performance with the addition
of more instructions, reinforcing the positive impact of data volume on model capability. This analysis confirms that
beyond the initial significant improvements seen with 5,000 samples, further enriching the instruction pool continues
to enhance model performance, highlighting the importance of both the quantity and diversity of instructional data.
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Figure 3: Performance on different evaluation tasks when LLaMA 2 7B is fine-tuned on varying number of instruction
samples in BioInstruct.

Discussion

In this study, we attempted to find out whether the impact of BioInstruct is tailored to specific BioNLP applications.
For this, we draw the synergies from multitask learning [48, 49], where studies have shown that similar tasks lead to



better improvement than tasks that differ (Table 4). As shown in Figure 2, the highest performance gain resides in
the scenario when the task and its intructions are similar. In addition, our results show that instruction tuning with
additional QA tasks improve performance when evaluating on IE and generative task, compared to those without
additional QA tasks. This supported previous finding in transfer learning: intermediate training on reasoning task tend
to transfer the best in various downstream tasks [50].

As shown in Figure 3, instruction tuning with more data improved the performance for most task except two clinical
QA tasks: MedQA-USMLE and MedMCQA, especially when compared to biomedical QA tasks: PubmedQA and
BioASQ. These tasks primarily focus on information retrieval from biomedical literature, where an extensive dataset
provides a richer context and a broader knowledge base for the model to understand and generate accurate responses.
On the other hand, MedQA-USMLE and MedMCQA present a set of challenges distinct from the former tasks, as
they are centered around clinical questions, which tend to be more specific, scenario-based, and require a depth of
understanding in clinical reasoning. The narrower focus and the need for practical application of knowledge in these
clinical tasks might not benefit as much from the addition of more data, especially if the added data is more general to
biomedical contexts.

Unfortunately, these was no best instruction tuning task combination that achieves the best performance across all
BioNLP tasks (Figure 2). It varied depending on the specific evaluation task. This correlated with previous studies in
the general NLP domain [51, 52, 50], and it was unclear how to identify such subset [53]. Future work could explore
task embedding for meta-learning [54, 55] in the BioNLP domain.

Limitation

Despite the merits of this study, there are several limitations that could be improved upon in future research. First,
we adopted an empirical sampling approach from prior research [17], choosing 3 demonstrations from a pool of
examples to construct the BioInstruct dataset. Future research could benefit from experimenting with the number
of demonstrations as a hyperparameter. Second, our selection of demonstrations was random. Previous works have
indicated that choosing demonstrations with semantic similarities can enhance performance in downstream tasks [56],
whereas others have suggested benefits from a more diverse selection [57]. An in-depth analysis of the balance between
similarity and diversity could provide more insights for future investigations. Additionally, a comparison with closed-
source models is missing in our current evaluation, which could provide a more comprehensive benchmark of our
model’s capabilities. This aspect will be considered in subsequent studies to better position our findings within the
broader landscape of model performances. Finally, we found that adding more fine-tuning samples would still improve
the performance of some tasks. In future work we will explore the threshold for the best performance.

Conclusion

We introduce BioInstruct, an automatically generated dataset of natural language instructions and their corresponding
inputs and outputs. Our experiments show that LLMs trained on BioInstruct outperformed not only LLMs without
BioInstruct, but also other strong LLMs being fine-tuned on extensive amounts domain-specific data. Our results also
show that the performance gained the most when instruction tuned on instructions with similar BioNLP applications
and that the performance gain was the steepest with the first 5k instructions.
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Appendix

Base Models

We conduct instruction tuning on two base LLMs from the LLaMA family.

• LLaMA 1 [18] is the most widely-used open-source language model, it has been trained on a large text corpus
with only auto-regressive learning, i.e., no instruction tuning is involved. We report its 7B and 13B models’
performance.

• LLaMA 2 [19] is an updated version of Llama, trained on a new mix of publicly available data with the increas-
ing size of the pretraining corpus by 40%, doubled the context length of the model, and adopted grouped-query
attention [58]. We also report its 7B and 13B models’ performance.

Parameter-Efficient Fine-Tuning

Standard fine-tuning often requires vast amounts of computational resources, as well as high-quality and extensive
datasets. However, given the limited size of our instruction data, it is crucial to adopt methods that are more efficient
in terms of computational cost and data requirements. Parameter-efficient tuning methods [59, 60] help achieve this
goal by making better use of the available data and minimizing the need for extensive resource allocation.

Specifically, we employ the Low-Rank Adaptation (LoRA) technique [60] to fine-tune the LLaMA 1 and LLaMA 2
models. The essence of LoRA lies in its approach to neural networks, which consist of dense layers responsible for
matrix multiplications. Typically, these layers’ weight matrices are of full-rank. [61] have demonstrated that when
adapting to specific tasks, pre-trained language models possess a low “intrinsic dimension”. Building on this insight,
LoRA hypothesize that weight updates during this adaptation phase also exhibit a low “intrinsic rank”. For a pre-
trained weight matrix W0 ∈ Rd×k its update is constrained by a low-rank decomposition W0 + ∆W = W0 + BA,
where B ∈ Rd×r, A ∈ Rr×k, and rank r ≪ min(d, k). During training, W0 is frozen and does not receive gradient
updates whereas A and B are trainable parameters. For h = W0x, the modified forward pass become:

h = W0x+∆Wx = W0x+BAx

With LoRA, we can efficiently fine-tune the LLMs even with limited GPU memory, enabling the fine-tuning of the
7B and 13B versions of LLaMA 1 and LLaMA 2 using just 2 A100 GPUs. Furthermore, it’s only necessary to save
the model adaptation weights (matrices B and A) as checkpoints. These adaptation weights are significantly more
compact than the original model weights, simplifying the process of sharing the models.

Experimental Settings

We tested the models in two settings: zero-shot and one-shot setting: In zero-shot setting, the model is only given
the task instruction without any training examples and then directly evaluated on the test set. In one-shot setting, the
model is provided with one example from the training set, along with the task instruction, before being evaluated on
the test set. This approach allows us to gauge the models’ intrinsic capability to generalize from limited or no exposure
to examples.



You are asked to come up with a set of 20 diverse task instructions specifically related to the biomedical or healthcare
domain. These task instructions will be given to a GPT model and we will evaluate the GPT model for completing the
instructions.
Here are the requirements:
1. Try to ensure a diverse set of tasks by varying the actions required in each instruction.
2. The language used for the instruction also should be diverse. For example, you should combine questions with impera-
tive instructions.
3. The type of instructions should be diverse. The list should include diverse types of tasks like question answering,
classification, summarization, simplification, etc.
4. A GPT language model should be able to complete the instruction. For example, do not ask the assistant to create any
visual or audio output.
5. The instructions should be in English.
6. The instructions should be concise and comprehensive. Either an imperative sentence or a question is permitted.
7. You should generate an appropriate input to the instruction. The input field should contain a specific example provided
for the instruction. It should involve realistic data and should not contain simple placeholders. The input should provide
substantial content to make the instruction challenging.
8. The output should be an appropriate response to the instruction and the input.
List of 20 tasks:
1. Instruction: Given a piece of medical text, rewrite it in a simpler way, suitable for a general audience without losing the
core information.
1. Input: Acute myocardial infarction (AMI), commonly known as a heart attack, occurs when blood flow decreases or
stops to a part of the heart, causing damage to the heart muscle.
1. Output: A heart attack, also known as acute myocardial infarction, happens when the heart does not get enough blood,
which can damage the heart muscle.
2. Instruction: Label medications, ignoring allergies. Include dosage, route, frequency, duration, reason, if available.
2. Input: 8. Albuterol 2 puffs every 4-6 hours as needed. HOSPITAL COURSE: This is an 80-year-old female who
was hospitalized about 2 months ago for chronic obstructive pulmonary disease exacerbation. At that time she was put
on prednisone and antibiotics and seemed to get better. However, she was put on Augmentin ES and continued to have
difficulty tasting food and felt that food tasted very salty. She had no appetite and she has continued to lose weight over
the last 2 months.
2. Output:-”medication: ”Albuterol”, dosage: ”2 puffs”, frequency: ”every 4-6 hours”, duration: ”as needed” -medication:
”prednisone”, duration: ”2 months” -medication: ”antibiotics”, duration: ”2 months” -medication: ”Augmentin ES”,
duration: ”2 months”
3. Instruction: Given a specific health-related question from a user, provide a concise and accurate response based on
general health knowledge. Avoid providing personal medical advice and remind the user to consult with a healthcare
professional for personal health concerns.
3. Input: What can I do to help prevent heart disease?
3. Output: Regular exercise, a healthy diet, maintaining a healthy weight, not smoking, limiting alcohol, and controlling
high blood pressure, high cholesterol and diabetes can help you prevent heart disease. Always consult with a healthcare
professional for personal health concerns.
4. Instruction: Identify the main conclusion from the provided medical report excerpt.
4. Input: The patient’s blood test results showed an elevation in liver enzymes, specifically ALT and AST, which suggests
potential liver damage. Additionally, the patient’s ultrasound showed a fatty liver.
4. Output: The patient has signs of liver damage and a fatty liver.
5. Instruction: ...
...........................

Table 5: An illustration of our data generation prompt. Black: The prompt provided to the model. Blue: Model’s
generations for the given prompt.



Examples

Instruction: Given a detailed health-related query from a consumer, summarize it into a concise question.
Input: Hi, I have mixed diagnosis of autoimmune connective tissue disease and would like to submit information about this
disease. I also need some serious rheumatologist recommended in Argentina or Latin America. From already thank you very
much.
Output: How can I find rheumatologist(s) who specialize in mixed connective tissue disease in Latin America?

Instruction: Given a section of a medical record and a question related to it, provide the relevant information from the record as
an answer.
Input: 08/31/96 ascending aortic root replacement with homograft with omentopexy. The patient continued to be hemodynami-
cally stable making good progress. Physical examination: BMI: 33.4 Obese, high risk. Pulse: 60. resp. rate: 18. Has the patient
ever had an abnormal BMI?
Output: BMI: 33.4 Obese, high risk

Instruction: Given a pair of sentences, determine if the second sentence is an entailment, contradiction, or neutral with respect
to the first one.
Input: Sentence1: Labs were notable for Cr 1.7 (baseline 0.5 per old records) and lactate 2.4.
Sentence2: Patient has elevated Cr.
Output: entailment

Instruction: Given a medical scenario and a multiple choice question, choose the correct option.
Input: A 23-year-old pregnant woman at 22 weeks gestation presents with burning upon urination. She states it started 1 day ago
and has been worsening despite drinking more water and taking cranberry extract. She otherwise feels well and is followed by a
doctor for her pregnancy. Her temperature is 97.7°F (36.5°C), blood pressure is 122/77 mmHg, pulse is 80/min, respirations are
19/min, and oxygen saturation is 98% on room air. Physical exam is notable for an absence of costovertebral angle tenderness
and a gravid uterus. Which of the following is the best treatment for this patient? Options: A) Ampicillin B) Ceftriaxone C)
Ciprofloxacin D) Doxycycline E) Nitrofurantoin
Output: E) Nitrofurantoin

Instruction: generating a section summary associated with the short input conversation.
Input:
Doctor: What brings you back into the clinic today, miss?
Patient: I came in for a refill of my blood pressure medicine.
Doctor: It looks like Doctor Kumar followed up with you last time regarding your hypertension, osteoarthritis, osteoporosis,
hypothyroidism, allergic rhinitis and kidney stones. Have you noticed any changes or do you have any concerns regarding these
issues?
Patient: No.
Doctor: Have you had any fever or chills, cough, congestion, nausea, vomiting, chest pain, chest pressure?
Patient: No.
Doctor: Great. Also, for our records, how old are you and what race do you identify yourself as?
Patient: I am seventy six years old and identify as a white female.
Output: The patient is a 76-year-old white female who presents to the clinic today originally for hypertension and a med check.
She has a history of hypertension, osteoarthritis, osteoporosis, hypothyroidism, allergic rhinitis and kidney stones. Since her last
visit she has been followed by Dr. Kumar. Those issues are stable. She has had no fever or chills, cough, congestion, nausea,
vomiting, chest pain, chest pressure.

Table 6: Examples of instructions, inputs, and outputs in our seed tasks.



Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
### Instruction:
Given a short conversation between patient and doctor, write a section summary associated with that conversation.
### Input:
Doctor: What brings you back into the clinic today, miss?
Patient: I came in for a refill of my blood pressure medicine.
Doctor: It looks like Doctor Kumar followed up with you last time regarding your hypertension, osteoarthritis, osteo-
porosis, hypothyroidism, allergic rhinitis and kidney stones. Have you noticed any changes or do you have any concerns
regarding these issues?
Patient: No.
Doctor: Have you had any fever or chills, cough, congestion, nausea, vomiting, chest pain, chest pressure?
Patient: No.
Doctor: Great. Also, for our records, how old are you and what race do you identify yourself as?
Patient: I am seventy six years old and identify as a white female.
### Output::
The patient is a 76-year-old white female who presents to the clinic today originally for hypertension and a med check. She
has a history of hypertension, osteoarthritis, osteoporosis, hypothyroidism, allergic rhinitis and kidney stones. Since her
last visit she has been followed by Dr. Kumar. Those issues are stable. She has had no fever or chills, cough, congestion,
nausea, vomiting, chest pain, chest pressure.

Table 7: An illustration of our instruction tuning prompt. Black: The prompt provided to the model. Blue: Model’s
generations for the given prompt.


