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Abstract

We study the problem of event coreference
resolution (ECR) that seeks to group coref-
erent event mentions into the same clusters.
Deep learning methods have recently been ap-
plied for this task to deliver state-of-the-art
performance. However, existing deep learn-
ing models for ECR are limited in that they
cannot exploit important interactions between
relevant objects for ECR, e.g., context words
and entity mentions, to support the encoding
of document-level context. In addition, con-
sistency constraints between golden and pre-
dicted clusters of event mentions have not been
considered to improve representation learning
in prior deep learning models for ECR. This
work addresses such limitations by introduc-
ing a novel deep learning model for ECR. At
the core of our model are document structures
to explicitly capture relevant objects for ECR.
Our document structures introduce diverse
knowledge sources (discourse, syntax, seman-
tics) to compute edges/interactions between
structure nodes for document-level representa-
tion learning. We also present novel regular-
ization techniques based on consistencies of
golden and predicted clusters for event men-
tions in documents. Extensive experiments
show that our model achieve state-of-the-art
performance on two benchmark datasets.

1 Introduction

Event coreference resolution (ECR) is the task of
clustering event mentions (i.e., trigger words that
evoke an event) in a document such that each clus-
ter represents a unique real world event. For ex-
ample, the three event mentions in Figure 1, i.e.,
“refuse to sign, “raised objections”, and “doesn’t
sign”, should be grouped into the same cluster to
indicate their coreference to the same event.

A common component in prior ECR models in-
volves a binary classifier that receives a pair of

event mentions and predict their coreference (Chen
et al., 2009; Lu et al., 2016; Lu and Ng, 2017).
To this end, an important step in ECR models is
to transform event mention pairs into representa-
tion vectors to encode discriminative features for
coreference prediction. Early work on ECR has
achieved feature representation via feature engi-
neering where multiple features are hand-designed
for input event mention pairs (Lu and Ng, 2017). A
major problem with feature engineering is the spar-
sity of the features that limits the generalization
to unseen data. Representation learning in deep
learning models has recently been introduced to
address this issue, leading to more robust methods
with better performance for ECR (Nguyen et al.,
2016; Choubey and Huang, 2018; Huang et al.,
2019; Barhom et al., 2019). As such, there are at
least two limitations in existing deep learning mod-
els for ECR that will be addressed in this work to
improve the performance.

First, as event mentions pairs for coreference
prediction might belong to long-distance sentences
in documents, capturing document-level context be-
tween the event mentions (i.e., beyond the two sen-
tences that host the event mentions) might present
useful information for ECR. As their first limita-
tion, prior deep learning models for ECR has only
attempted to encode document-level context via
hand-designed features (Kenyon-Dean et al., 2018;
Barhom et al., 2019) that still suffer from the fea-
ture sparsity issue. In addition, such prior work is
unable to exploit ECR-related objects in documents
(e.g., entity mentions, context words) and their
connections/interactions (possibly beyond sentence
boundary) to aid representation learning. An exam-
ple for the importance of context words, entity men-
tions, and their interactions for ECR can be seen in
Figure 1. Here, to decisively determine the coref-
erence of “raised objections” and “doesn’t sign”,
ECR systems should recognize “Trump” and “the
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Donald Trump continued to refuse to sign a relief package
agreed in Congress and headed instead to the golf course….
Trump, who is spending the Christmas and New Year
holiday at his Mar-a-Lago resort in Florida, raised objections
to the $900bn relief bill only after it was passed by Congress
last week, having been negotiated by his own treasury
secretary Steven Mnuchin… All these folks and their families
will suffer if Trump doesn’t sign the damn bill.

Coreferential event mentions

Coreferential entity mentions

Figure 1: An example for event coreference resolution.

$900bn relief bill” as the arguments of “raised ob-
jections”, and “Trump” and “the damn bill” as the
arguments of “doesn’t sign”. The systems should
also be able to realize the coreference relation be-
tween the two entity mentions “Trump”, and be-
tween “the $900bn relief bill” and “the damn bill”
to conclude the same identity for the event men-
tions (i.e., as they involve the same arguments).
As such, it is helpful to identify relevant entity
mentions, context words and leverage their rela-
tions/interactions to improve representation vectors
for event mentions in ECR. Motivated by this issue,
we propose to form graphs for documents (called
document structures) to explicitly capture relevant
objects and interactions for ECR that will be con-
sumed to learn representation vectors for event
mentions. In particular, context words, entity men-
tions, and event mentions will serve as the nodes
in our document structures due to their intuitive
relevance to ECR. Different types of knowledge
sources will then be exploited to connect the nodes
for the document structures, featuring discourse in-
formation (e.g., to connect coreferring entity men-
tions), syntactic information (e.g., to directly link
event mentions and their arguments), and seman-
tic similarity (e.g., to connect words/event men-
tions with similar meanings). Such rich document
structures allows us to model the interactions of
relevant objects for ECR beyond sentence level
for document-level context. Using graph convolu-
tional neural networks (GCN) (Kipf and Welling,
2017; Nguyen and Grishman, 2018) for represen-
tation learning, we expect enriched representation
vectors from the document structures can further
improve the performance of ECR systems. To our
knowledge, this is the first time that rich document
structures are employed for ECR.

Second, prior deep learning models for ECR
fails to leverage consistencies between golden clus-

ters (provided by human) and predicted clusters
(generated by models) to promote representation
learning. In particular, it is intuitive that ECR mod-
els can achieve better performance if their predicted
event clusters are more similar to the golden event
clusters in the data. To this end, we propose to
obtain different inconsistency measures between
golden and predicted clusters that will be incorpo-
rated into the overall loss function for minimization.
As such, we expect that the consistency/similarity
regularization between two types of clusters can
provide useful training signals to improve repre-
sentation vectors for event mentions in ECR. To
our knowledge, this is also the first work to ex-
ploit cluster consistency-based regularization for
representation learning in ECR. Finally, we con-
duct extensive experiments for ECR on the KBP
benchmark datasets. The experiments demonstrate
the benefits of the proposed methods and lead to
state-of-the-art performance for ECR.

2 Related Work

Event coreference resolution is broadly related to
works on entity coreference resolution that aim to
resolve nouns phrases/mentions for entities (Raghu-
nathan et al., 2010; Ng, 2010; Durrett and Klein,
2013; Lee et al., 2017a; Joshi et al., 2019b,a). How-
ever, resolving event mentions has been considered
as a more challenging task than entity coreference
resolution due to the more complex structures of
event mentions (Yang et al., 2015).

Our work focuses on the within-document set-
ting for ECR where input event mentions are ex-
pected to appear in the same input documents;
however, we also note prior works on cross-
document ECR (Lee et al., 2012a; Adrian Bejan
and Harabagiu, 2014; Choubey and Huang, 2017;
Kenyon-Dean et al., 2018; Barhom et al., 2019;
Cattan et al., 2020). As such, for within-document
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ECR, previous methods have applied feature-based
models for pairwise classifiers (Ahn, 2006; Chen
et al., 2009; Cybulska and Vossen, 2015; Peng
et al., 2016), spectral graph clustering (Chen and Ji,
2009), information propagation (Liu et al., 2014),
markov logic networks (Lu et al., 2016), joint mod-
eling of ECR with event detection (Araki and Mi-
tamura, 2015; Lu et al., 2016; Chen and Ng, 2016;
Lu and Ng, 2017), and recent deep learning models
(Nguyen et al., 2016; Choubey and Huang, 2018;
Huang et al., 2019; Lu et al., 2020; Choubey et al.,
2020). Compared to previous deep learning works
for ECR, our model presents a novel representation
learning framework based on document structures
to explicitly encode important interactions between
relevant objects, and representation regularization
to exploit the cluster consistency between golden
and predicted clusters for event mentions.

3 Model

Formally, in ECR, given an input document D =
w1, w2, . . . , wN (of N words/tokens) with a set of
event mentions E = {e1, e2, . . . , e|E|}, the goal is
to group the event mentions in E into clusters to
capture the coreference relation between mentions.
Our ECR model consists of four major components:
(i) Document Encoder to words into representation
vectors, (ii) Document Structure to create graphs
for documents and learn rich representation vec-
tors for event mentions, (iii) End-to-end Resolu-
tion to simultaneously resolve the coreference for
the entity mentions in D, and (iv) Cluster Consis-
tency Regularization to regularize representation
vectors based on consistency constraints between
golden and predict event mention clusters. Figure
2 presents an overview of our model for ECR.

3.1 Document Encoder

In the first step, we transform each word wi ∈
D into a representation vector xi by feeding D
into the pre-trained language model BERT (Devlin
et al., 2019). In particular, as BERT might split wi

into several word-pieces, we average the hidden
vectors of the word-pieces of wi in the last layer of
BERT to obtain the representation vector xi for wi.
To handle long documents with BERT, we divideD
into segments of 512 consecutive word-pieces that
will be encoded separately. The resulting sequence
X = x1, x2, . . . , xn for D is then sent to the next
steps for further computation.

3.2 Document Structure

This component aims to learn representation vec-
tors for the event mentions inE using an interaction
graph G = {N , E} for D that facilitates the enrich-
ment of representation vectors for event mentions
with relevant objects and interactions at document
level. As such, the nodes and edges in G for our
ECR problem are constructed as follows:

Nodes: The node setN for our interaction graph
G should capture relevant objects for the corefer-
ence between event mentions in D. Toward this
goal, we consider all the context words (i.e., wi),
event mentions, and entity mentions in D as rel-
evant objects for our ECR problem. For conve-
nience, let M = {m1,m2, . . . ,m|M |} be the set
of entity mentions in D. The node set N for G
is thus created by the union of D, E, and M :
N = D ∪ E ∪ M = {n1, n2, . . . , n|N |}. To
achieve a fair comparison, we use the predicted
event mentions that are provided by (Choubey and
Huang, 2018) in the datasets for E. The Stanford
CoreNLP toolkit is employed to obtain the entity
mentions M .

Edges: The edges between the nodes in N
for G will be represented by an adjacency matrix
A = {aij}i,j=|N | (aij ∈ R) in this work. As
A will be consumed by Graph Convolutional Net-
works (GCN) to learn representation vectors for
ECR, the value/score aij between two nodes ni
and nj inN is expected to estimate the importance
(or the level of interaction) of nj for the represen-
tation computation of ni. This structure allows ni
and nj of N to directly interact and influence the
representation computation of each other even if
they are sequentially far away from each other in
D. As presented in the introduction, we explore
three types of information to design the edges E
(or compute the interaction scores aij) for G in our
model, including discourse-based, syntax-based
and semantic-based information.
Discourse-based Edges: Due to multiple sen-
tences and event/entity mentions involved in the
input document D, we need to understand where
such objects span and how they relate to each other
to effectively encode document context for ECR.
To this end, we propose to exploit three types of dis-
course information to obtain the interaction graph
G, i.e., sentence boundary, coreference structure,
and mention span for event/entity mentions in D.

Sentence Boundary: Our motivation for this in-
formation is that event/entity mentions appearing
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Figure 2: An overview of the proposed ECR model.

in the same sentences tend to be more contextually
related to each other than those in different sen-
tences. As such, event/entity mentions in the same
sentences might involve more helpful information
for the representation computation of each other
in our problem. To capture this intuition, we com-
pute the sentence boundary-based interaction score
asentij for the nodes ni and nj inN where asentij = 1
if ni and nj are the event/entity mentions of the
same sentences in D (i.e., ni, nj ∈ E ∪M ); and 0
otherwise. We will use asentij as an input to compute
the overall interaction score aij for G later.

Entity Coreference Structure: Instead of con-
sidering within-sentence information as in asentij ,
coreference structure focuses on the connection of
entity mentions across sentences to enrich their rep-
resentations with the contextual information of the
coreferring ones. As such, to enable the interaction
of representations for coreferring enity mentions,
we compute the conference-based score acorefij for
each pair of nodes ni and nj to contribute to the
overall score aij for representation learning. Here,
acorefij is set to 1 if ni and nj are coreferring entity
mentions in D, and 0 otherwise. Note that we also
use the Stanford CoreNLP toolkit to determine the
coreference of entity mentions in this work.

Mention Span: The sentence boundary and coref-
erence structure scores model interactions of event
and entity mentions in D based on discourse struc-
ture. To connect event and entity mentions to
context words wi for representation learning, we
employ the mention span-based interaction score
aspanij as another input for aij . Here, aspanij is

only set to 1 (i.e., 0 otherwise) if ni is a word
(ni ∈ D) in the span of the entity/event mention nj
(nj ∈ E∪M ) or vice verse. aspanij is important as it
helps ground representation vectors of event/entity
mentions to the contextual information in D.
Syntax-based Edges: We expect the dependency
trees of the sentences in D to provide beneficial
information to connect the nodes in N for effec-
tive representation learning in ECR. For example,
dependency trees have been used to retrieve im-
portant context words between an event mentions
and their arguments in prior work (Li et al., 2013;
Veyseh et al., 2020a,b). To this end, we propose
to employ the dependency relations/connections
between the words in D to obtain a syntax-based
interaction score adepij for each pair of nodes ni and
nj in N , serving as an additional input for aij . In
particular, by inheriting the graph structures of the
dependency trees of the sentences in D, we set
adepij to 1 if ni and nj are two words in the same
sentence (i.e., ni, nj ∈ D) and there is an edge be-
tween them in the corresponding dependency tree1,
and 0 otherwise.
Semantic-based Edges: This information lever-
ages the semantic similarity of the nodes in N to
enrich the overall interaction scores aij for G. Our
motivation is that a node ni will contribute more
to the representation computation of another node
nj for ECR if ni is more semantically related to
nj . In particular, as the representation vectors for
the nodes in N have captured the contextual se-
mantics of the words in D, we propose to explore

1We use Stanford CoreNLP to parse sentences.
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a novel source of semantic information that relies
on external knowledge for the words to compute
interaction scores between the nodes N in our doc-
ument structures for ECR. We expect the external
knowledge for the words to provide complemen-
tary information to the contextual information in
D, thus further enriching the overall interaction
scores aij for the nodes in N . To this end, we pro-
pose to utilize WordNet (Miller, 1995), a rich net-
work of word meanings, to obtain external knowl-
edge for the words in D. The word meanings (i.e.,
synsets) in WordNet are connected to each other
via different semantic relations (e.g., synonyms,
hyponyms). In particular, our first step to generate
knowledge-based similarity scores involves map-
ping each word node ni ∈ D ∩ N to a synset
node Mi in WordNet using a Word Sense Disam-
biguation (WSD) tool. In particular, we employ
WordNet 3.0 and the state-of-the-art BERT-based
WSD model in (Blevins and Zettlemoyer, 2020) to
perform the word-synset mapping in this work. Af-
terward, we compute a knowledge-based similarity
score astructij for each pair of word nodes ni and nj
in D ∩ N using the structure-based similarity of
their linked synsets Mi and Mj in WordNet (i.e.,
astructij = 0 if either ni or nj is not a word node in
D ∩N ). Accordingly, the Lin similarity measure
(Lin et al., 1998) for synset nodes in WordNet is uti-
lized for this purpose: astructij =

2∗IC(LCS(Mi,Mj))
IC(Mi)+IC(Mj)

.
Here, IC and LCS represent the information con-
tent of synset nodes and the least common sub-
sumer of two synsets in the WordNet hierarchy
(the most specific ancestor node) respectively2.
Structure Combination: Up to now, five scores
have been generated to capture the level of inter-
actions in representation learning for each pair of
nodes ni and nj in N according to different in-
formation sources (i.e., asentij , acorefij , aspanij , adepij

and astructij ). For convenience, we group the five
scores for each node pair ni and nj into a vector
dij = [asentij , acorefij , aspanij , adepij , astructij ] of size 5.
To combine the scores in dij into an overall rich
interaction score aij for ni and nj in G, we use the
following normalization:

aij = exp(dijq
T )/

∑
u=1..|N|

exp(diuq
T ) (1)

2We use the nltk tool to obtain the Lin sim-
ilarity: https://www.nltk.org/howto/wordnet.
html. We tried other WordNet-based similarities available
in nltk (e.g., Wu-Palmer similarity), but the Lin similarity
produced the best results in our experiments.

where q is a learnable vector of size 5.
Representation Learning: Given the combined
interaction graph G with the adjacency matrix
A = {aij}i,j=|N |, we use GCNs to induce rep-
resentation vectors for the nodes in N for ECR. In
particular, our GCN model takes the initial repre-
sentation vectors vi of the nodes ni ∈ N as the
input. Here, the initial representation vector vi for
a word node ni ∈ D is directly obtained from the
BERT-based representation vector xc ∈ X (i.e.,
vi = xc) of the corresponding word wc for ni. In
contrast, for event and entity mentions, their initial
representation vectors are obtained by max-pooling
the contextualized embedding vectors in X that
correspond to the words in the event/entity men-
tions’ spans. For convenience, we organize vi into
rows of the input matrix H0 = [v1, . . . , v|N |]. The
GCN model then involves G layers that generate
the matrix Hl at the l-th layer for the nodes in N
(1 ≤ l ≤ G) via: Hl = ReLU(AHl−1Wl) (Wl is
the weight matrix for the l-th layer). The output of
the GCN model after G layers is HG whose rows
are denoted by HG = [h1, . . . , h|N |], serving as
more abstract representation vectors for the nodes
ni in the coreference prediction for event mentions.
Also, for convenience, let {re1 , . . . , re|E|} ⊂ HG

be the set of GCN-induced representation vectors
for the event mention nodes in e1, . . . , e|E| in E.

3.3 End-to-end Coreference Resolution

To facilitate the incorporation of the consistency
regularization between golden and predicted clus-
ters into the training process, we perform and end-
to-end procedure that seeks to simultaneously re-
solve the coreference for the event mentions in
E in a single process. Motivated by the entity
coreference resolution in (Lee et al., 2017b), we
implement the end-to-end resolution via a set of
antecedent assignments for the event mentions in
E. In particular, we assume that the event mentions
inE are enumerated in their appearance order inD.
As such, our model aims to link each event mention
ei ∈ E to one of its prior event mention in the set
Yi = {ε, e1, . . . , ei−1} (ε is a dumpy antecedent).
Here, a link of ei to a non-dumpy antecedent ej in
Yi represents a coreference relation between ei and
ej . In contrast, a dumpy assignment for ei indicates
that ei is not coreferent with any prior event men-
tion. By forming a coreference graph with ei as
the nodes, the non-dumpy antecedent assignments
for every event mention in E can be utitlized to

https://www.nltk.org/howto/wordnet.html
https://www.nltk.org/howto/wordnet.html
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connect coreference event mentions. Connected
components from the coreference graph can then
be returned to serve as predicted event mention
clusters in D.

In order to predict the coreferent antecedent
yi ∈ Y for an event mention ei, we compute the
distribution over the possible antecedents in Yi
for ei via: P (yi| ei,Yi) = es(ei,yi)∑

y′∈Y(i) e
s(ei,y′)

where

s(ei, ej) is a score function to determine the coref-
erence likelihood between ei and ej in D. To this
end, we set s(ei, ε) = 0 for all ei ∈ E. Inspired
by (Lee et al., 2017b), we obtain the score function
s(ei, ej) for ei and ej by leveraging their GCN-
induced representation vectors rei and rej via:

s(ei, ej) = sm(ei) + sm(ej) + sc(ei, ej) + sa(ei, ej)

sm(ei) = w>
mFFm(rei)

sc(ei, ej) = w>
a FFc([rei , rej , rei � rej ])

sa(ei, ej) = r>eiW crej

where Fm and FFc are two-layer feed-forward net-
works, w>m and w>a are learnable vectors, W c

is a weight matrix, and � is the element-wise
multiplication. At the inference time, we em-
ploy the greedy decoding to predict the antecedent
ŷi for ei: ŷi = argmaxP (yi|ei,Yi). For train-
ing, we use the negative log-likelihood as the loss
function in our end-to-end framework: Lpred =

−
∑|E|

i=0 logP (y
∗
i |ei,Yi) (y∗i ∈ Yi is the golden

antecedent for ei).

3.4 Cluster Consistency Regularization
To further improve representation learning for ECR,
we propose to regularize the induced representa-
tion vectors of the event mentions in E to explicitly
enforce the consistency/similarity between golden
and predicted event mention clusters in D. This
is based on our motivation that ECR models will
perform better if they can produce more similar
event mention clusters to the golden ones. As such,
for convenience, let T = {T1, T2, . . . , T|T |} and
P = {P1, P2, . . . , P|P|} be the golden and pre-
dicted sets of event mentions in E respectively,
i.e., Ti, Pj ⊂ E, and T1 ∪ T2 ∪ . . . ∪ T|T | =
P1∪P2∪. . .∪P|P| = E. Also, for each clusterC in
T or P , we compute a centroid vector rC for it by
averaging the representation vectors of the event
mention members: rC = averagee∈C(re). This
leads to the centroid vectors {rT1 , rT2 , . . . , rT|T |}
and {rP1 , rP2 , . . . , rP|P|} for T and P respectively.
We propose the following regularization terms for
cluster consistency:

Intra-cluster Consistency: This constraint con-
cerns the inner information of each cluster, char-
acterizing the structure of each individual event
mention in its golden and predicted clusters in T
andP . In particular, for each event mention ei ∈ E,
we expect its distances to the centroid vectors of
the corresponding golden and predicted clusters
T ′i and P ′i in T and P (respectively) to be similar,
i.e., T ′i ∈ T , P ′i ∈ P, ei ∈ T ′i , ei ∈ P ′i . As such,
we compute the distances between the representa-
tion vector rei of ei to the centroid vectors rT ′

i
and

rP ′
i

via the Euclidean distances ‖rei − rT ′
i
‖22 and

‖rei − rP ′
i
‖22. Afterward, the differences Linner

between the two distances for golden and predicted
clusters are aggregated over all event mentions and
added into the overall loss function for minimiza-
tion: Linner =

∑|E|
i=1 |‖rei−rT ′

i
‖22−‖rei−rP ′

i
‖22|.

Inter-cluster Consistency: In this constraint, we
expect that the structure among the clusters Ti
in the golden set T is consistent with those for
the predicted event cluster set P (i.e., inter-cluster
regulation). To implement this idea, we encode
the structure of the clusters in a set via the av-
erage of the pairwise distances between the cen-
troid vectors of the clusters. In particular, the
inter-cluster structure scores for the golden and
predicted clusters in T and P are computed via:
sT = 2

|T |(|T |−1)
∑|T |

i=1

∑|T |
j=i+1 ‖rTi − rTj‖22, and

sP = 2
|P|(|P|−1)

∑|P|
i=1

∑|P|
j=i+1 ‖rPi − rPj‖22. The

difference between the structure scores for golden
and predicted clusters T and P is then included
into the overall loss function for minimization:
Linter = |sT − sP |.
Inter-set Similarity: This constraint aims to di-
rectly promote the similarity between the golden
clusters in T and the predicted clusters in P . As
such, for the golden and predicted cluster sets T
and P , we first obtain the overall centroid vec-
tors uT and uP (respectively) by averaging the
centroid vectors of their member clusters: uT =
averageT∈T (rT ) and uP = averageP∈P(rP ). The
Euclidean distance Lsim is then integrated into the
overall loss for minimization: Lsim = ‖uT −uP‖22.
Note that Linner, Linter, and Lsim will be zero if
the predicted clusters in P are the same as those in
the golden clusters in T .

To summarize, the overall loss function L to
train our ECR model in this work is: L =
Lpred + αinnerLinner + αinterLinter + αsimLsim
with αinner, αinter, and αsim as the trade-off pa-
rameters.
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4 Experiments

4.1 Dataset & Hyperparameters
Following prior work (Choubey and Huang, 2018),
we train our ECR models on the KBP 2015 dataset
(Mitamura et al., 2015) and evaluate the models
on the KBP 2016 and KBP 2017 datasets for ECR
(Mitamura et al., 2016, 2017). In particular, the
KBP 2015 dataset includes 360 annotated docu-
ments for ECR (181 documents from discussion
forum and 179 documents from news articles). We
use the same 310 documents from KBP 2015 as in
(Choubey and Huang, 2018) for the training data
and the remaining 50 documents for the develop-
ment data. Also, similar to (Choubey and Huang,
2018), the news articles in KBP 2016 (85 docu-
ments) and KBP 2017 (83 documents) are lever-
aged for test datasets. To ensure a fair comparison,
we use the predicted event mentions provided by
(Choubey and Huang, 2018) in all the datasets. Fi-
nally, we report the ECR performance based on
the official KBP 2017 scorer (version 1.8)3. The
scorer employs four coreference scoring measures,
including MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), CEAF-e (Luo, 2005), BLANC
(Lee et al., 2012b), and the unweighted average of
their F1 scores (AVGF1).

Hyper-parameters for the models are fine-tuned
by the AVGF1 scores over development data. The
selected values from the tuning process include: 1e-
5 for the learning rate of the Adam optimizer (se-
lected from [1e-5, 2e-5, 3e-5, 4e-5, 5e-5]); 8 for the
mini-batch size (selected from [8, 16, 32, 64]); 128
hidden units for all the feed-forward network and
GCN layers (selected from [64, 128, 256, 512]);
2 layers for the GCN model, G = 2 (selected
from [1, 2, 3, 4]), and αinner = 0.1, αinter =
0.1, and αsim = 0.1 for the trade-off parame-
ters in the overall loss function L (selected from
[0.1, 0, 2, . . . , 0.9]). Finally, we use the BERTbase

model (of 768 dimensions) for the pre-trained word
embeddings (updated during the training).

4.2 Performance Evaluation
We compare the proposed model for ECR with
document structures and cluster consistency regu-
larization (called StructECR) with prior work ECR
models in the same evaluation setting, including
the joint model between ECR and event detection
(Lu and Ng, 2017), the integer linear programming

3https://github.com/hunterhector/
EvmEval

approach in (Choubey and Huang, 2018), and the
discourse structure profiling model in (Choubey
et al., 2020) (also the model with the best reported
performance in KBP datasets). In addition, we
examine the following baselines of StructECR to
highlight the benefits of the proposed components:

E2E-Only: This variant implements the end-to-
end resolution model described in Section 3.3
where all event mentions in a document are re-
solved simultaneously in a single process. How-
ever, different from our full model StructECR, E2E-
Only does not include the document structure com-
ponent with GCN for representation learning, i.e.,
it directly uses the initial representation vectors vi
(induced from BERT) for the event mentions in the
computation of the distribution P (yi|ei,Yi). Also,
the cluster consistency regularization in Section 3.4
is also not included in this model.

Pairwise: This model is similar to E2E-Only in
that it does not applies the document structures and
regularization terms in StructECR. In addition, in-
stead of simultaneously resolving event mentions
in documents, Pairwise predicts the coreference for
every pair of event mentions separately. In particu-
lar, the representation vectors vei and vej for two
event mentions ei and ej (included from BERT)
are combined via [vei , vej , vei � vej ]. This vector
is then sent into a feed-forward network to pro-
duce a distribution over possible coreference labels
between ei and ej (i.e., two labels for being coref-
erent or not). The coreference labels for every pair
of event mentions are then gathered in a corefer-
ence graphs among event mentions; the connected
components will be returned for the event clusters.

Table 1 reports the performance of the ECR mod-
els on the KBP 2016 and KBP 2017 datasets. As
can be seen from the table, E2E-Only performs
comparably or better than prior state-of-the-art
models for ECR, e.g., (Choubey and Huang, 2018)
and (Choubey et al., 2020), that employ extensive
feature engineering. In addition, the better perfor-
mance of E2E-Only over Pairwise (for both KBP
2016 and KBP 2017) illustrates the benefits of end-
to-end coreference resolution for event mentions in
documents. Most importantly, the proposed model
StructECR significantly outperforms all the base-
line models for which the performance improve-
ment over E2E-Only is 1.94% and 1.26% (i.e.,
AVGF1 scores) over the KBP 2016 and KBP 2017
datasets respectively. This clearly demonstrates
the benefits of the proposed ECR model with rich

https://github.com/hunterhector/EvmEval
https://github.com/hunterhector/EvmEval
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KBP 2016 KBP 2017
Model B3 CEAFe MUC BLANC AVGF1 B3 CEAFe MUC BLANC AVGF1

(Lu and Ng, 2017) 50.16 48.59 32.41 32.72 40.97 - - - - -
(Choubey and Huang, 2018) 51.67 49.10 34.08 34.08 42.23 50.35 48.61 37.24 31.94 42.04
(Choubey et al., 2020) 52.78 49.70 34.62 34.49 42.90 51.68 50.57 37.8 33.39 43.36
Pairwise 52.16 49.84 30.79 32.21 41.25 50.97 48.80 36.92 31.86 42.14
E2E-Only 50.89 50.43 36.05 33.93 42.83 51.60 52.03 38.53 33.02 43.80
StructECR 52.77 52.29 38.37 35.66 44.77 51.93 52.82 40.73 34.75 45.06

Table 1: Models’ performance on the KBP 2016 and KBP 2017 datasets. The performance improvement of
StructECR over E2E-Only is significant with p < 0.01.

document structures and cluster consistency regu-
larization for representation learning.

4.3 Ablation Study
Two major components in the proposed model
StructECR involve the document structures and
the cluster consistency regularization. This sec-
tion performs an ablation study to reveal the con-
tribution of such components for the full model.
First, for the document structures, we examine
the following ablated models: (i) “StructECR -
x”: where x is one of the five interaction scores
used to compute the unified score aij for G (i.e.,
asentij , acorefij , aspanij , adepij , and astructij ). For exam-
ple, “StructECR - aspanij ” implies a variant of
StructECR where the span-based interaction score
aspanij is not included in the compuation of the over-
all score aij ; (ii) “StructECR - Entity Nodes: this
model excludes the entity mention nodes from the
interaction graph G in StructECR (i.e.,N = D∪E
only); (iii) “StructECR - GraphCombine”: in-
stead of unifying the five interaction scores in dij
into an overall score aij in Equation 1, this model
considers each of the five generated interaction
scores as forming a separate interaction graph, thus
producing six different graphs. The GCN model is
then applied over those five graphs (using the same
initial representation vectors vi for the nodes ni in
N ). The outputs of the GCN model for the same
node ni (with different graphs) are then concate-
nated to compute the final representation vector hi
for ni; and (iv) StructECR - Doc Structures: this
model removes the GCN model from StructECR.
As such, the interaction graph G is not used and
the GCN-induced representation vectors hi are re-
placed by the initial BERT-induced representation
vectors vi in the computation for end-to-end reso-
lution and consistency regularization.

Second, for the cluster consistency regular-
ization, we evaluate the following ablated mod-
els for StructECR: (v) StructECR - y (y ∈

Model B3 CEAFe MUC BLANC AVGF1

StructECR (full) 76.86 69.99 66.40 69.02 70.57
StructECR - asentij 75.37 69.73 62.42 69.49 69.25
StructECR - acorefij 75.07 69.74 62.97 69.67 69.36
StructECR - aspanij 75.32 70.32 63.44 66.97 69.01
StructECR - adepij 74.66 69.76 62.72 69.14 69.07
StructECR - astructij 75.44 69.53 61.82 71.48 69.57
StructECR - Entity Nodes 74.67 69.71 63.01 67.35 68.69
StructECR - GraphCombine 75.41 69.74 62.38 68.90 69.11
StructECR - Doc Structures 74.15 66.78 60.24 66.32 66.87
StructECR - Linner 75.09 68.44 62.25 68.01 68.45
StructECR - Linter 74.80 67.98 61.92 67.71 68.10
StructECR - Lsim 75.13 68.12 62.03 68.95 68.56
StructECR - Regularization 74.46 67.55 60.74 68.28 67.76

Table 2: Performance on the KBP 2015 dev set.

KBP 2016 KBP 2017
NW→ DF DF→ NW NW→ DF DF→ NW

Pairwise 60.51 58.11 59.22 59.10
E2E-Only 65.82 62.01 62.56 62.52
StructECR 68.19 65.83 65.19 65.12

Table 3: Cross-domain performance (AVGF1). NW
and DF represent news articles and discussion forum
documents respectively. X→Y implies models trained
on domain X and tested on domain Y.

{Linner,Linter,Lsim}): these models exclude one
of the regularization terms for the consistency be-
tween golden and predicted clusters from the over-
all loss function L; and (vi) StructECR - Regular-
ization: this model completely ignores the consis-
tency regularization component from StructECR.

Table 2 shows the performance of the models
on the development data of the KBP 2015 dataset.
As can be seen, the elimination of any component
from StructECR would significantly hurt the per-
formance, thus clearly demonstrating the benefits
of the designed document structures and cluster
consistency regularization in StructECR.

4.4 Cross-domain Evaluation

To further demonstrate the benefits for the pro-
posed model StructECR, we evaluate StructECR
and the baseline models Pairwise and E2E-Only in
the cross-domain setting. In this setting, we aim
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to train the models on one domain (the source do-
main) and evaluate them on another domain (the
target domain). We leverage the KBP 2016 and
KBP 2017 datasets for this experiment. In particu-
lar, KBP 2016 annotates ECR data for 85 newswire
and 84 discussion forum documents (i.e., two do-
mains/genres) while KBP 2017 provides annotated
data for ECR on 83 news articles and 84 discus-
sion forum documents. As such, for each dataset,
we consider two setups where documents in one
domain (i.e., newswire or discussion forum) are
used for the source domain, leaving documents in
the other domain for the target domain data. We
use the same hyper-parameters that are tuned on
the development set of KBP 2015 for the models
in this experiment. Table 3 presents the perfor-
mance of the models. It is clear from the table that
StructECR are significantly and substantially better
than the baseline models (p < 0.01) over differ-
ent datasets and settings for the source and target
domains, thereby confirming the domain general-
ization advantages of StructECR for ECR.

5 Conclusion

We present a novel end-to-end coreference resolu-
tion framework for event mentions based on deep
learning. The novelty in our model is twofold. First,
document structures are introduced to explicitly
capture relevant objects and their interactions in
documents to aid representation learning. Second,
several regularization techniques are proposed to
exploit the consistencies between human-provided
and machine-generated clusters of event mentions
in documents. We perform extensive experiments
on two benchmark datasets for ECR to demonstrate
the advantages of the proposed model. In the future,
we plan to extend our models to related problems
in information extraction, e.g., event extraction.
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